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The two-dimensional problem of the action of a moving load on a nonlinearly-compressible 
plastic strip lying in a half-space of linearly elastic or plastic material is considered. 
Rocks and protective liners of various underground structures may be considered as the base 
of the strip, in particular a layer of soft ground. 

It is noted that the problem of action of a moving load on a linearly compressible 
plastic strip with a rigid base was examined in [i, 2]. In contrast to [i, 2] in this work 
the wave process in a layered material is studied taking account of nonlinear loading of 
the strip material and the stress-strained state of the base, the effect of inelastic prop- 
erties of the materials on the distribution of kinematic parameters and stresses in them 
is studied, and the shape of the front surface of the wave reflected from an elastic rocky 
base is determined. 

i. Let over the upper boundary of a strip of thickness h move a steadily decreasing 
normal load with constant velocity D exceeding the velocity of loading-unloading deformation 
propagation for the medium and the base. The medium filling strip is modelled by a generalized 
"plastic gas" [3, 4] and under load the connection between pressure p and volumetric deforma- 
tion e is taken in the form p = ~l e + ~2e 2 (dp/de > 0, d2p/de 2 > 0). The angle of slope 
of the unloading branch E for the p ~ e diagram exceeds the slope of the loading branch, 
and the loading profile does not change as the wave propagates. 

If the material of the base of the strip is linearly elastic and the medium is dense, 
i.e., P0 < Pba (P0 and Pba are density of the strip and base materials), then the compression 
wave with a curvilinear surface propagating in the strip Z (Fig. i) with ~ = x + Dt ~ ~a, 

= y = h after reaction with the base generates in it elastic longitudinal and transverse 
waves and also a reflected shock wave from the surface Z 0 in the strip ahead of which with 
considerable velocity cp = ~ 0  a weak distortional elastic wave radiates as a characteristic 
of the negative direction. As a result of wave propagation and reaction with the strip boundaries 
disturbed areas 1-4, and I, II (Fig. i) arise respectively. Solution of the problem for 
regions 1 and 2 by an inverse method in the case when the prescribed shape of the front 
surface Z has the form q(~) = (R I - R2~/2)~ (Ri, R 2 are prescribed constant values) has 
been obtained previously in [2]. Given below is an analytical solution of the contact 
problem for regions 3, and I, II. 
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Solution of the problem in region 3 in relation to velocity potential ~:3($, q), as 
in [2], is expressed by a d'Alembert equation 

%(~, ~) = J~(~ --~) + [a(~ Jr- ~) ,  (1.1) 

u3(~, q) = 8~/85, v3(~, q) = 8~3/8 q are horizontal and vertical ground velocity components 
in region 3. 

In elastic regions I and II of a rocky half-space for potentials of displacements ~ and 
according to [5] with D > a0 

~(~, ~) = F~(g -- ~), ~(~, n) = F~(~ -- ~n), ( 1 . 2 )  

where F3(0) = F~(0) = 0; ~z ~ = (D/a0) 2 - i; ~2 ~ = (D/b0) ~ - i; a0 2 = (~ + 2G)/Pba; ~ and 

G are Lame coefficients for the base material. In order to find unknown functions f3(z), 
f,(z), F3(z) and F,(z) the problem in regions 3, I, and II has the following boundary condi- 
tions: at the reflected wave front 

= = - -  

(1.3) 
u,~ = u ~ ,  a re  = D sin ~ (~), p~  = =~s~ + =~s~,  ~ = I - -  Po/0~, i = 2, 3; 

at the contact of the two media with q = h, ~,a <- ~ <- $0 

where 

acPs ( 1 .4  ) 

O(I) O~. O~ a~.  au. ov ou 
U = T~ - -  ~ '  V = ~ + T~'  TM = -g-~' e ~  = -g-~; 8~  = ~ + ( 1 . 5 )  

oV 

a2<I) a2~p a2,~.  Oq) sin ~ - -  
%~=G 2 ~ + o g  ~ o-~]'v"=- 

aq) . a(p . aq~ COS ~ -F ~ sin ~. -~cos~, v~ = - ~ i  

Tn Eqs .  ( 1 . 3 ) - ( 1 . 5 )  t h e r e  i s  a d d i t i o n a l  u s e  o f  t h e  f o l l o w i n g  n o t a t i o n s :  U and  V a r e  h o r i z o n -  
t a l  and  v e r t i c a l  c o m p o n e n t s  o f  e l a s t i c  medium d i s p l a c e m e n t ;  % ~  and  o~r 1 a r e  c o m p o n e n t s  o f  
e l a s t i c  s t r e s s e s ;  v n and  v~ a r e  n o r m a l  and  t a n g e n t i a l  c o m p o n e n t s  o f  mass  v e l o c i t y  f o r  t h e  
s t r i p  m a t e r i a l  i n  r e l a t i o n  t o  f r o n t  r.0; ~ ( ~ )  i s  a n g l e  o f  s l o p e  f o r  t h e  r e f l e c t e d  wave f r o n t  
w i t h  a x i s  O~ (~0 ~ $ ( 0 ) ) ,  w h i c h  i s  s u b j e c t  t o  d e t e r m i n a t i o n  i n  t h e  c o u r s e  o f  s o l v i n g  t h e  
problem; are is reflected wave front propagation velocity; parameters relating to front 
Z 0 are marked with an asterisk. 

Assuming in the first approximation fl(g) ~ ~0, the third equation of (1.3) with n ~ h - 
tan g0 (~ - ~a) is written in the form 

( ' ~ - - - ~ )  = t g ~ o \  ~ ~ 7 "  ( 1 . 6 )  

If it is considered that are m V2n* and P2* ~ P0, then the first and second equations of 
(1.3) are written as 

- -  poD(Om,/ag - -  om~/ag) = p,*-pa*; (1.7) 

t~ ~ (~) = 
all O~l ] o~1 o ol 1 ] 

[ ( 1 . 8 )  

In addition, in region 3 

Ps(~, ~) = P3* + E(%--%*)  = - - o o D a ~ J o L  (1.9) 
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It is noted that tans 0 is determined from conditions (1.3) and (1.4) taking account of the 
ratio in the fronts of elastic longitudinal and transverse waves with $ = ~a, N = h (see 
Fig. i). By using (i.i) and (1.2), from (1.4) and (1.6) we obtai{ 

where 

f , ( ~ )  = 

F ;  ( , )  = 

F~ (z) = 

1 
A (L G) f~ (z + 2~h), 

~(~-~)  {/~[z + h ( ~ i - -  @] --/~[z + h(~ + @l]; + 

2~ {/~[z + h(~--~)]--/'~[z + h(~, + ~)]]; 

/ , '(z) - XoA(~,, G)f,'(~oZ + Ko) = F(z), 

(i.io) 

(i.ii) 

(1.12) 

F (~) = 

Ko = ~t[(l -- ~o)h + (t + ~o) tg [3og=]; 

A ( ~ , G ) { [  z-~(h-tg~o~a) ( h +  tg~o~. ) _ 
(i + ~ tg ~o) u2 -(i ~ -tg-~-~ ' 

(1.13) 

z--~t(h--tg~o[a) ] [z --Jr (h-- tg J]o~a) =- ~(a: tg  ~o~a)l/ 
--tgJS~ "(l+--~tg-lf~ - - tgJ~~ L ( i+~tg~o)  ' (h+ tg [3~176  ( i+~tg~o)  JJ' 

A ( ~ , , G ) = { I  ~ [p~D ~ t ) ( ~ l  t ) 2 G  r , 
~1 ( ~  + i) (~'~ + -- + -- + 

t) 

' ,  (~'~ "I- I )  (~z Jr ~ ] Po D'2G __ 2~l~t.~) �9 

By solving functional Eq. (1.12) by the method of successive approximation it is possi- 
ble to find a recurrent equation 

/ , ( z ) = F ( z ) +  ~7~A"(~,,G)F ~ z + K o x - - ~ - ~  j .  ( 1 .14 )  

It is noted that from Eq. (1.14) with I ~ =, G + ~, i.e., with A(~, G) = i, results in [2] 
are obtained. 

The study showed that series (1.14) with 10 < 1 and A(A, G) < 1 converges (in carrying 
out calculations it is easy to establish the radius of its convergence). Thus, from (i.i) 
and (1.2) taking account of (I.i0), (i.ii) and (1.14) the velocity field u3($ , n) = 

~3/8~, v3($, n) = 8~:3/8N is determined for a nonlinearly compressible material in region 
3 and the elastic base in regions I and II. Equations (1.7) and (1.8) make it possible 
to determine Ps* and tgn~($). BY usin$ (1.9) and (1.5) we find the pressure field in the 
strip and stress components in the half-space, in particular at the contact line between 
the strip and the deforming base. Consequently, the problem in regions 3, I, and II is 
entirely resolved. 

2. In the case when the base of the strip consists of a more compliant plastic materi- 
al modelled by an ideal inelastic medium, i.e., with pp < P0 (Pp is density of the base 
material) the reflected shock wave considered in part 1 degenerates into a strong separation 
elastic wave and its front E 0 conforms with the front of the reflected elastic wave AB, 
and disturbed region 2 disappears (see Fig. i). The structure of waves in a plastic half-. 
space depends on physicomathematical characteristics and deformation laws for its materials. 

We assume that deformation of the material of the base of the strip occurs by a Prandtl 
scheme with Young's moduli E l and E 2 (E I > Es). Then after reaction of an oblique c~res- 
sion wave E with the boundary of the plastic base at first an elastic wave a0 = ~E1/pp, 

and then a plastic wave ap = JEs/pp with angles of slope X0 and 7 will propagate, and for 
the base the wave picture presented in Fig. 1 is qualitatively retained. As was said previ- 
ously, in this case solution of the problem in region I in [2]. In order to solve the 
problem in regions 3 and II we use equations [2, 4] 
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~ a~ ~ aq ~ ~ - -  I; 
( 2 . 1 )  

02 2 ( D )  2 
o. q)II 0 %1 O, % = - -  1. ( 2 . 2 )  

Equations (2.1) and (2.2) permit solutions in the form 

( 2 . 3 )  

In order to find unknown functions ~i (i = I, 4) the problem in question has the following 
boundary conditions: 

( v n - -  vl) = ~x(ua- -u , )  for r I = h - -  (~--~a)/IX; ( 2 . 4 )  

p~(L n ) =  p~(~, ~), ~'~(~, n ) =  (2.5) 
= v = ~ ( g ,  rl) for  rl = h ,  ~ ~ g ~ ;  

tg ?(v~,--v~) = --(u~,--u,) for rl = h + tg ?(~ --  ~=) ( 2 . 6 )  

(ap  = D s in~ , ,  h i s  s t r i p  t h i c k n e s s ) .  C o n s i d e r i n g  t h a t  p a ( ~ ,  rl) = -poDua(~ ,  q ) ,  P I T ( S ,  q) = 

--ppDUIT(~, rl) ,  we s u b s t i t u t e  ( 2 . 3 )  in  ( 2 . 4 ) - ( 2 . 6 ) .  Then a f t e r  some t r a n s f o r m a t i o n s  we o b t a i n  

a f imc t~ iona l  e q u a t i o n  

@,'(z) + ~,vOa'(Llz + K1) = G(z), ( 2 . 7 )  

where 

r (z) = X* [z - -  Vo ( h , -  tg Y~.)l q- (i  + v o tg ?) ~a. 
2 

~b 2 (z) = El [z - -  % (h - -  tg ?~a)] - -  (1 - -  % tg ?) ~a - -  21th. 
21, 

- -  m gP' l  = 

Xp = Llm; kl = v0[(h + tg Y~a) - -  ~l(h --  tg ?~a)]" 

As in  [ 2 ] ,  Eq. ( 2 . 7 )  i s  s o l v e d  by t h e  method o f  s u c c e s s i v e  a p p r o x i m a t i o n s .  Then 

r  ( - % ) " a  ~ z + . . ( ~ _ l ) j .  

S i n c e  Xp < 1, i t  i s  p o s s i b l e  t o  d e m o n s t r a t e  c o n v e r g e n c e  o f  s e r i e s  ( 2 . 8 )  which  i s  c o n f i r m e d  
by numerical calculations. 

Thus, in order to determine velocity and pressure components in regions 3 and II of a 
layered plastic medium we have 

20p %/(P0") {c [(g + ~n) + 
us (L n) = y [ul (21, x.~)- vl (xl, x2)/~] + (~o/~ + 0o/P0) 

+ ( n -  ~,)h] + ~ ( -  ~)"G[~(~+>~+(,~o--r,)h)+X~(~--O/(~--t)]}-- 
? t ~ l  

m [u~ (xs, x~) --v~ (23, x4)/tq, 

29p %/Po { 
v~ (~. n) = - ~ [u~ ( x ,  x.o) - ~,i ( x ,  x.o)/~] + (~olt~ + . ~ P o )  G [(~ + t~n) + 

+ (~o - ~) h] + ,~ ( -  ~,)" c [ ~  (~ + ~n + (% - ~) h) + 

+ K~ (~- -  t)/(~1-- t) ]}-- -~ [u,(~., 7.) -- ~,(X., X~)/~], P.(~, n)=--ooDu.(~,n); 
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,)1(~i- 01} ' . . . .  + K~ ( ~  - -  +" (vo/~ "-I-" PP/P0) [uz (v~' v~) - -  v.(v~, v~)/~t] 4- 

+ v(~ + ,o,~1 + ~ ( -  ~,Pc[~r(~ + ,'0~1 + K , ( X l  - ~ ) / { ~ -  ~}1, 
n=l 

v ~  (L n) = - ml~ {C [(~ - vo~) 

+ K~ ( ~ - -  ~)/(~. - ~)]} 

+ 2%h1 + ~ ( - -  ~,~)'~G [~,~ (~ - -  vo~ l + 2voh) + 
?t=l 

[u~ (~,. v,,) - -  v~ ( v .  v~)/~.~] + 
(~o/~ + ep/%) 

(2.~) 

~I 

p ~  (~, ~) = - -  p D u n  ( L  ~1), 

where (~ -- ~) + ~ (h + ~a/~); (h + ~a/~) -- (~ -- ~t~)/~ 

XI= 2 ' %2- 2 ; 

Xa = 2 %4 = 2 ; 

vl  = (B - ~o'1) + %a + ~a; v~ - -  - (~ - "%~0 + ~o h - ~ (2h + Bdr~) 
2 21~ 

Furthermore, parameters of the plastic compliant base of the strip in region I (see Fig. i) 
with fulfillment of the condition pi($, ~) = o s (o s is a prescribed constant value) are 
determined as : 

u~ : - - o J p p O ,  v~ = (~s/ppD tg Y0, ex ----- (~/E1 (tg ?0 = i/v0). 

In this analytical study the problem of reaction of a moving load on a two-layer plastic 
half-space is assumed to be complete. However, it is emphasized that this procedure makes 
it possible to study shock-wave processes in a layered half-space of different structure 
and in the case of a shock wave in the material of the plastic base of the strip. 

3. On the basis of the equations obtained above calculations were carried out on a 
computer for parameters of movement and pressure, including stresses, for a two-layer materi- 
al consisting of a layer of soft ground of various construction [2, 4] and a deformable 
base. Marble and epoxy foam were taken as the base materials. In order to calculate their 
parameters the following data and relationships were used [2]: 

~(~) : (tg a 0 - -  (b/2)~)~, ~1'([) : d~l/d~ > 0; 

Po - 200 kg.sec2/m u a l  = 12A27"102 kg/cme, (3.1) 

C7. 2 ~ 58.73. iO 3 kg/cm 2 

E = i4.103 kg/cm 2 h = t .5m , b = 0.86.t0-3(1/m), 

p .  ---- /(0) = 300 kgIcm2; 
Pba= 260 k 4 ~ . s e J ] =  ~ ; a o = 4000 m/see b 0 = 2200 =/sec;  ( 3 . 2 )  

P0 = 200 kg . seJ /m ~, oq = t8.10~kg/cm 2, 0 % -  82.10 ~ kg/cm ~, ( 3 . 3 )  

E = t8 - t03  kg/cm~, h = 3 . 5 m ,  b = R ~  = 0 , 2 3 0 t . 1 0  -a (t1-),  

Po = ~00 kg/cm 2, D = 3t14 m/sec, tg a 0 ---- R~ = 0.t433; 

pp = 20 kg.sec2/m u, E 1 : 250 kg/cm 2 , E~ = i50 kg/cm2 (3.4) 

o~ = 3.5 kg]cm 2 , tg ~ ---- t/~t, ~ ---- (D~/cp ~ - -  l). 

Some r e s u l t s  o f  c a l c u l a t i o n s  i n  t h e  f o r m  o f  c u r v e s  f o r  t h e  c h a n g e  i n  p r e s s u r e  p ,  v e r t i -  
c a l ' v  and  h o r i z o n t a l  u c o m p o n e n t s  Of v e l o c i t y  o f  t h e  medium i n  r e l a t i o n  t o  h o r i z o n t a l  c o o r d i -  
n a t e  $ t a k i n g  a c c o u n t  o f  ( 3 . 1 ) - ( 3 . 4 )  a r e  g i v e n  i n  F i ~ s .  2 - 5  w h e r e  c u r v e s  1 -3  c o r r e s p o n d  
t o  h o r i z o n t a l  l e v e l s  q = 0 ;  3 h / 4 ;  i n  F i g s .  4 and  5 h r e l a t e s  t o  s o l u t i o n  o f  t h e  p r o b l e m  
i n  p a r t  2 u s i n g  o r i g i n a l  d a t a  f r o m  ( 3 . 3 )  and  ( 3 . 4 )  ( c u r v e  2 i s  q = h / 2 ) .  

I t  c a n  be  seem f r o m  F i g s .  2 - 5  t h a t  p and  v i n  r e g i o n  1 w i t h  an  i n c r e a s e  i n  h d e c r e a s e  
s t e a d i l y .  The r e d u c t i o n  i n  p and  v o v e r  t h e  v e r t i c a l  c o o r d i n a t e  ~ d e p e n d s  m a r k e d l y  on t h e  
n o n l i n e a r  p r o p e r t i e s  o f  t h e  g r o u n d  and  t h e  l o a d i n g  p r o f i l e .  I n  t h e  g r o u n d  t h e  wave p r o c e s s  
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transformed as follows: ground with different horizontal levels at first under the action 
of a compression wave is loaded instantaneously to a certain stress level, and behind the 
front of this wave in region 1 with respect to $ there is unloading and pressure falls. 
Then in region 2 with reaction of an oblique compression wave with the rocky base of the 
strip there is some gradual increase in pressure. In this case at the instant of action 
of a reflection of the waves from the contact of the two media a further jumpwise increase 
(reduction) of p(v) is obtained followed by fading of their amplitude in region 3 with 
respect to $ (Figs. 2 and 3). However, if the base of the strip serves as a plastically 
compliant low modulus material (epoxy foam, polystyrene foam, etc.), then as calculations 
show the reflected wave (Figs. 4 and 5) becomes an unloading wave and at the front of this 
wave in contrast to the case of a rocky base there is a jumpwise reduction (increase) in 
the value of pressure (vertical component of velocity for the medium). This is due to the 
fact that for a layer of soft ground provided with a base of porous or lighter ground the 
compression wave propagating in the ground during reaction with interfaces of the media 
reflects from it not a shock wave, but an elastic wave with known constant velocity Cp. 
The front of this wave is a separation surface, and consequently in it with q = h a jump 
in pressure arises. A similar picture is observed also with reflection of an elastic or 
acoustic wave from a free surface [5]. 

By analyzing the curves in Fig. 3 it was detected that pressure P3* (P2*) from the 
direction of region 3 (2) along the front reflected from the elastic and more dense ground 
of the base depending on ~ the wave gradually falls (increases) and the vertical (horizontal) 
component of velocity for the medium increases (decreases). The curve for P3* (P2*) exhib- 
its some lower (increased) amplitude than the corresponding curve from [2] for strips lying 
on a rigid base (see Fig. 2, broken lines with circles). Pressure distribution in the re- 
flected wave front and in region 3 depends markedly on its profile which exists at the upper 
boundary of the strip with the moving load. For example, in the case of b = 0.86.10 -3 the 
reflected wave at instant $ = 22.6 m is extinguished, i.e., pressure P3* becomes equal to 
P2* (see Fig. 3, solid lines). If we ignore the deformability of the base, then the dura- 
tion of action of the reflected wave on the medium is somewhat prolonged. 

By studying curves tan~($) (Fig. 3) it is noted that with an increase in $ it decreases 
slowly, and consequently the reflected wave front becomes curved surface towards axis 06. 
In addition, curve tanS(S) taking account of deformability of the base is located beneath 
the curve obtained for a wave reflected from the rigid base of the strip (broken line with 
circles). 

On the whole the study and comparative analysis of calculated results show that in 
considering the problem with a rigid or deformable base more dense than the ground the maximum 
value of contact pressure behind the reflected wave front exceeds the value of pressure 
at the corresponding point of the descending wave by more than a factor of two, and with 
presence of a plastic compliant base the level of pressure at the contact line of the media 
decreases somewhat, i.e., in the last case the reflected wave is a strong distortional elas- 
tic wave, or at its surface there is a jumpwise reduction in the value of pressure. 
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AXlSYMMETRICAL CONTACT PROBLEMS FOR PRESTRESSED 

DEFORMABLE BODIES 

V. M. Aleksandrov and I. V. Vorotyntseva UDC 539.3 

Axisymmetrical contact problems are considered for a half-space and a layer of finite 
thickness h lying without friction on a deformable base previously stressed by uniform forces 
with intensity p applied at infinity. It is assumed that the material of deformable bodies 
is described by equations of physical nonlinear elasticity theory. The initial stress- 
strained state of the bodies (prestressing regime) is determined as an accurate solution 
of these equations. Action of a load on the surface of a layer (half-space) is considered 
as a small disturbance of the basic nonlinear stress field caused by prior loading. This 
makes it possible to perform linearization of all equations with respect to additional 
stresses, strains, and displacements. Contact problems for impression of a rigid stamp 
into a physically nonlinear material are posed for the linear equations obtained which are 
then reduced to first-order integral equations with a symmetrical irregular kernel with 
respect to distribution functions for contact pressures. Solutions of these equations are 
built up by means of asymptotic methods. Cases of loss of stability and deformability of 
a medium as a result of prestressing are studied. The effect of prestressing regime on 
the magnitude of contact pressures is studied. 

i. Resolution equations for physically nonlinear (geometricallylinear) elasticity 
theory for the case of axial symmetry and with the condition of absence of mass forces may 
be written as follows [I]: 

0% a'~z % --  % O, o-c,~ a~,. trz ( 1 . 1 )  
o-7 + -aT + ~ - f ; -  + -~z + 7- = O; 

e~ ----~o: q- (~ --~)(;, e~ = $o~ /- (q0 --$)(~, (1 .2 )  
~ =gg~+(~--~)o, e~ = ~ ,  e=~o, ?=25~, 

=(o~+o~+~)/3, e=(e~+e,+eD/3, 
i = ~ [(~, - ~)~ + r - ~z) ~ + (~r - o~)~ + 6 ~ ]  1/~, 

~_~[ 3 2 2 , -~'/2 
~, = @ , . _  ~<,): + ( ~ , _  ~:).~ + @<, _ ~j2 + m ('~"~ + v,: + "l,<~:)J , 

e~ = Oular ,  e~ = u / r ,  e~ = OwlOz, 

e ~  = ( t / 2 ) ( a u l a z - t - O w / a r ) ,  u = u ( r ,  z) ,  w = w(r ,  z) ,  

a28r a2Ez = 2 o2Srz osr e r - sip 
Oz--": y -t- Or"" T ar Oz' Or r 
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